[Paper review 14]

Simple and Scalable Predictive
Uncertainty Estimation using Deep
Ensembles

(B. Lakshminarayanan et al., 2017)

[Contents]

0. Abstract

1. Introduction

2. Deep Ensembles : A simple Recipe for Predictive Uncertainty Estimation
3. Problem setup & High-level summary

2. Proper Scoring Rules
3. Adversarial training to smooth predictive distributions
4. Ensembles

4. Algorithm

0. Abstract

Bayesian NN : SOTA for estimating predictive uncertainty
Propose an alternative to BNN!

e simple to implement

e parallelizable

e requires very little hyperparamter tuning

e yields high quality predictive uncertainty estimates

Better than approximate BNNs!

1. Introduction

focus on 2 evaluation measures

e 1) calibration
e 2)generalization to unknown class

af://n0
af://n2
af://n3
af://n5
af://n25
af://n39

Calibration

e discrepancy between subjective forecasts & (empirical) long run frequencies
e can be measured by "proper scoring rules"

Generalization to unknown class

e generalization of the predictive uncertainty to domain shift (= out-of-domain examples)
e "measuring if the network KNOWS what it KNOWS"

ex) if a network (trained on one dataset) is evaluated on completely different dataset, should
output high predictive uncertainty!

Summary of contributions

e 1) describe "simple & scalable method for estimating predictive uncertainty estimates from
NNs"

(using proper scoring rule)
(+two modifications : (1) ensembles & (2) adversarial training)
e 2)evaluating the quality of thee predictive uncertainty

(in terms of (1) calibration & (2) generalization to unknown classes))

Out performs MCDO (Monte Carlo Drop Out) !!

Novelty and Significance

e (1) Ensembles of NN (=deep ensembles) : boost performance
e (2) Adversarial training : improve robustness
e first work to investigate that (1) & (2) can be useful for predictive uncertainty estimation!

2. Deep Ensembles :

A simple Recipe for Predictive Uncertainty
Estimation

2.1 Problem setup & High-level summary
(Very Simplel)

(step 1) use a proper scoring rule as a training criterion

(step 2) use adversarial training to smooth the predictive distributions

(step 3) train an ensemble

af://n47
af://n54
af://n62
af://n73
af://n82
af://n83
af://n85
af://n91

2.2 Proper Scoring Rules

scoring rule

e function S (py, (y,x))
¢ evaluates the quality of the predictive distribution py(y | x) ,

relative to an event y | x ~ ¢(y | x) (where g(y, x) is a true distribution)
e the higher, the better

proper scoring rules

e onewhere S (ps, q) < S(q,q)

with equality if and only if ps(y | x) = q(y | x), for all pg and ¢
e then, NNs are trained by minimizing the loss £(0) = —S (pg, q)

(encourages calibration of predictive uncertainty)

Examples

e maximizing MLE : S (pg, (y,x)) = logps(y | x),
e softmax (cross entropy) loss : log likelihood

e minimizing the squared error : £(6) = —5 (pg, (4, %)) = K S8 | (6p—y—po(y = k | x))?

2.2.1 Training criterion for regression

MSE : does not capture predictive uncertainty
Use network with 2 output values (in final layer)

e predicted mean pu(x)
e predicted variance o?(z)

116(X) og(x)

af://n91
af://n119

Treat observed samples from Gaussian (with predicted mean & variance)
That is, we minimize NLL criterion.

N
L= _% > iey log vV (yi; po (:) 7(73 (93@»

log o (x) — 1y (x))?
—logpe (yn | Xn) = —2 + (y;;((x))) +C

2.3 Adversarial training to smooth predictive
distributions

Adversarial examples : 'close’ to the original training examples, but are misclassified by NN

Fast gradient sign method (Goodfellow et al.)

e way to generate adversarial example
o x' =x+ esign(Vy4(0,x,y))

Adversarial perturbation "creates a new training example" by adding a perturbation along a
direction "which the network is likely to increase loss"

if € is small enough

e can be used to augment the original training set!
(by treating (', y) as additional samples)

e improve classifier's robustness!

Interestingly, adversarial training can be interpreted as a computationally efficient solution to smooth
the predictive distributions by increasing the likelihood of the target around an e-neighborhood of
the observed training examples.

2.4 Ensembles

Bagging & Boosting

Bagging

e with complex model
e reduce variance

Boosting

e with simple model
e reduce bias

af://n134
af://n155
af://n171

3.

Algorithm

Algorithm 1 Pseudocode of the training procedure for our method

l:

a

> Let each neural network parametrize a distribution over the outputs, i.e. pg(y|x). Use a proper

scoring rule as the training criterion £(6,x,y). Recommended default values are M =5 and

€ = 1% of the input range of the corresponding dimension (e.g 2.55 if input range is [0,255]).

Initialize A1, @2, . .., far randomly

form=1: M do > train networks independently in parallel
Sample data point n,, randomly for each net > single nm, for clarity, minibatch in practice
Generate adversarial example using xj, =X, +€ sign(Vxnm O X s Yrin))

Minimize U(0m; Xn,, s Yn,,) T £(Om; X, 3 Yn,,) Wit Oy > adversarial training (optional)

combine predictions!

py|x) =M M py (y]x,0m)

e classification) averaging the predicted probabilities.
e regression) mixture of Gaussian distributions

Approximate the ensemble prediction as a Gaussian

Py %) = M S0 g, (5] %,6m) & M7 SN (e, (), 03, ()

o mean:p(x) = MY, g, (%)
e variance:o?(x) = M1 (agm (x) + 2 (x)) — 12 (x)

af://n171

	[Paper review 14]
	Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
	(B. Lakshminarayanan et al., 2017)

	[Contents]
	0. Abstract
	1. Introduction
	Calibration
	Generalization to unknown class
	Summary of contributions
	Novelty and Significance

	2. Deep Ensembles :
	A simple Recipe for Predictive Uncertainty Estimation
	2.1 Problem setup & High-level summary
	2.2 Proper Scoring Rules
	2.2.1 Training criterion for regression

	2.3 Adversarial training to smooth predictive distributions
	2.4 Ensembles
	3. Algorithm

